

Development guide
Create your own templates with
Bluo CMS

2

Introduction .. 3
Steps in creating a template .. 4
Files ... 7
Flexy .. 11
Template structure ... 12
Modules ... 15

RenderText... 16
Role .. 16
Running procedure ... 17
How it works ... 17
Available Functions and Variables.. 19
Examples .. 19

RenderHTML.. 21
Role .. 21
Running procedure ... 21
How It Works .. 22
Functions and constants... 22
Examples .. 25

RenderInfo.. 27
Role .. 27
Running procedure ... 28
How it works ... 28
Available Functions and Variables.. 29
Examples .. 29

RenderBreadcrumb .. 31
Role .. 31
Running procedure ... 32
How it works ... 32
Functions and Variables ... 33
Example.. 36

RenderMenu... 38
Role .. 38
Running procedure ... 38
How it works ... 42
Functions and Variables ... 43
Examples .. 48

The CSS .. 50

3

Introduction
In Bluo the content is separated from the graphics. The graphics of your site
are contained in files called templates. Bluo comes with 5 customizable
templates and by reading this document you could easily add many more.

4

Steps in creating a template

To build up a Bluo template, you should follow these steps:

1. The first thing you need is a design.

2. Once you like the design you have (or the design you create), you will be
able to build up the html file. We highly recommend you that during
building it up, you write all the classes in a CSS file.

3. Once the two files are ready: the html file and the CSS file, you can start
creating the template itself.

4. The directory containing your site1 must have the structure in the image
below. Otherwise, extract one more time the archive you have
downloaded from http://www.bluocms.com 2

From the files you see in the image above, you are interested in the file
called templates. This is actually the file which contains all the templates
available for your version of Bluo.

5. This second step consists in creating a new directory in the directory

templates, whose name will also be given to your template. This
directory should have the following structure of files and directories:

1
 If you do not have Bluo, get on http://www.bluocms.com and download the version you are

interested in.
2
 If you do not have it anymore you must download Bluo again from http://www.bluocms.com

5

6. After having made sure that the directory containing the name of your

template has the above depicted configuration, you have to copy the
images included in the html file you created in the img directory. After
that, you have to copy the content from the file containing the styles in
style.css.

7. You write the content of the copyright.txt and description.txt files and you
replace the screenshot.jpg image with the image you want to be
assigned to your template. Make sure that the name of this image
remains screenshot.jpg1.

8. You can now begin creating the template by filling in the html files. The
templates: homepage.html, index.html, inactive.html, insite_page.html
and page_not_found.html are compulsory. The rest of the templates are
not necessary unless your site imposes it. Within their content you can
use a series of modules2 which will considerably ease up your work.

9. After having created these templates you can modify or not the style.css
file, as mentioned in the CSS chapter.

1
 It is important that the extension be .jpg

2
 I will present to you these modules in the chapter specially dedicated to them.

6

10. Only after being sure that the style.css file contains the default1 styles for
your site, can you fill in the default.css file with the content from the
style.css.

11. You open the administration area and select from Settings -> Templates
your template in order to visualize it.

12. You check whether the template is well done by visualizing the front
end2. You make correct the problems of formatting, if there are any.

13. THAT’S IT!

1
 You can obtain the custom styles as a result of the modifications in the admin area in the

Settings -> Design options section.
2
 This checking can be performed beginning from step 8.

7

Files

Observation: The templates: homepage.html, index.html, inactive.html,
insite_page.html and page_not_found.html are compulsory. The rest of the
templates are not necessary unless your site imposes it.

Let me show you what the meaning of each directory/file is:

- Img – is the directory where all the images appearing on your site are

stocked, except for those images which appear in the content section of the
page of a page (see bellow for more details about the structure of a
template). These last ones are being stocked in the uploaded file which
appears in the image at step 4. Also, all the images uploaded from the
administration area using the editor are saved in this folder.

- Modules – in this directory you will find all the templates needed for the
RenderHTML, RenderBreadcrumb and RenderMenu modules (more on the
modules bellow). I will tell you more on the content of this directory at the
chapter dedicated to explaining the modules of Bluo.

- copyright.txt and description.txt are two complementary files.
Description.txt contains the description of the template, and copyright.txt
contains the name of template creator. The content of these two files
appears in the administration area, in the Settings> Templates section.

8

- default.css - is the file containing the default stiles for your template.
This means that when you click the Restore to default button in section
Setting> Design option in the administration area, the content of the
style.css file will automatically be replaced by the content in default.css.
You must not mistake default.css with style.css. We will talk about this at
the right moment.

- homepage.html – is the template for the starting page of your website.

- Inactive.html – is the template for the Inactive Website page, which will
be posted in case you deactivate your website. You can find the Inactive
Website page in the tree in the administration area, at Non-Menu Pages
section.

- Index.html – is the template for all the pages existing in the Menu

Pages section, except for Homepage. Check out the image bellow to see
which the pages for which the index.html template applies are.

9

- Insite_page.html is the template available for all the pages in the Non-
menu pages section, pages which are different from Inactive Website,
Page not found and Sitemap. For these last pages you can have
different templates (see bellow)

- newsletter.html is the template which is being used the moment a
visitor of your site enters his contact data to the newsletter box.

- page_not_found.html is the template for the Page not found page,
which you can find in the administration area at the Non-menu pages
section.

- screenshot.jpg is the image designated to your template; it will appear
in the administration area in the Settings->Templates. For example, for
the Mozart template , the image from screenshot.jpg is framed in the red
square you can see below:

10

- search.html is the template for the Search Results page which posts the
search results.

- sitemap.html is the template for the Sitemap page appearing in the
Non-menu pages section.

- style.css is the file where you can find the styles for your template. I will
tell you more about the content of this file in the chapter dedicated to it

- subscribe.html is the template which is being posted the moment a

visitor of your site confirms his subscription to the newsletter.

- text.php is a file containing two arrays: text and help, which you will fill in
according to the prescriptions presented in the RenderText module

- unsubscribe.html is the template for the page appearing when a visitor
of your site unsubscribe from the newsletter.

11

Flexy

Flexy is a PEAR scripting platform above PHP. We will use it to create our
templates.

Here you are some notions about flexy that will be useful to you:

{variableName} – Writes the value of the variable variableName

{variableName:h} – Writes the value of the variable variableName in html

code

{nameFunction(param1,param2,…)} – Runs the nameFunction function

with the parameters param1, …

{runModule(#numeModul#,#param1#,#param2#,…..)} – Runs the

nameModule module with the parameters param1, param2, …

The if structure

{if:variable}

HTML_Code_Branch_If

{else:}

HTML_Code_Branch_Else

{end:}

{if:functionBoolean()}

HTML_Code_Branch_If

{else:}

HTML_Code_Branch_Else

{end:}

The foreach struture

{foreach:nameArray,key,value}

HTML_Code

{end:}

<tr flexy:foreach=" nameArray,key,value "> <!—insertinf

the foreach structure within an HTML tag -->

More info: http://pear.php.net/package/HTML_Template_Flexy/

12

Template structure

We are interested in the way the structural parts of a template look in front end
and in the way those components are generated.

We can distingue the follow sections of a Bluo template:

- Sections included using modules (more in the following chapter)
- Page content that the user can insert using the admin area
- Page title, also introduced in the admin area.

The way you put title and content section in your template is very important.
You can use 2 variables for that:

pageContent – this is the variable that holds the HTML content edited in the
admin area.

You can use in the HTML part of your template like this:
 {pageContent:h}

pageTitle – this is the variable that holds the page title of the page

You can use in the HTML part of your template like this:
 {pageTitle}

13

Let me also tell you about variable that introduces page title in browser title bar.

It is called head.

head – its value is the code contained <head> and </head> tags. It contains all
the <meta> tags, the <title> tag and also a reference to style.css file.

You can use it this way:

{head:h}

Here’s how the variable looks like for a template:

14

We will speak about the other modules in the following chapters.

15

Modules

Modules are functional units that allow you to add functionality to the HTML
files of a template. For example, in order to create a dynamic menu you could
recall a special module. Modules are created using Flexy and HTML, and are
recalled in your templates using runModule() function.

16

RenderText

Role

You can use the RenderText module if you want to insert within the page some
texts different from those you can change from the Content section in the
administration area, such as Page Name, Page Title etc.

Using this module, you can modify the inserted text from the Settings->Text
options section in the admin area.

If you did not manage yet to identify this section, the next image will certainly be
of help to you.

Let’s take an example of a text which will prove the usefulness of the Render
Text module:

Suppose that there appears a section of the newsletter within a page of your
template, and you have to assign a name to it. Let’s call it Newsletter.

17

Nevertheless, after some time, you might want to name it Newsletter
Subscription. Unless you use the RenderText module to insert the name, you
will have to modify all the template pages where this text appears. But if you
insert the text using this module, your work will be considerably reduced, and
all you will have to do will be a few clicks in the admin area.

Another example of a text which could appear on your site and for which I
recommend you to use the RenderText module to insert it, is the text appearing
in the footer, where you mention issues relates to copyright and the ownership
of the site.

Running procedure

All you need to know in order to insert a text sequence using the RenderText is
how it runs:

{runModule(#RenderText#,#TextName#)}

This code line has to be inserted in the template page right on the spot of the
text that you want to make editable from the admin area.

How it works

To understand better how this module operates, we must begin by its running
procedure:

{runModule(#RenderText#,#TextName#)}

With this code line the RenderText module is recalled and TextName is send as
a parameter for this one.

The TextName parameter is used as a key to search for the text that has to
appear in the respective place. Where is this text being looked for? There exists
a file named text.php which you can find in the root of the template and which
contains an array with all the texts inserted with the RenderText module.

18

Why is the text taken out from this file precisely? Because you can operate
upon this text from the admin area and that way you can easy make
adjustments.

Pay attention! In the admin area, the key by which the search is operated
within the RenderText module is not visible. This is the reason for which, if you
look closely, the text.php file contains another array named help, with which
you can assign tips for each text situated in the text array. These tips can be
seen in the admin area, as you can see in the image below:

Here’s an example for filling in the help vector:

Let us suppose that you want to insert in help a tip for the NewsletterTitle text
that we were talking about at the first example of running the module. This way,
the text.php file will look like this:

19

Available Functions and Variables

For this module there is no need for functions or variables.

Examples

Newsletter Title

We have the following code sequence:

If we want to introduce the ‘‘Newsletter” text using the RenderText, than here it
is what you have to modify in the html file:

After that, we modify the text.php file. For example, above we chose
NewsletterTitle as name for the string of characters “Newsletter”. In text.php we
will have to indicate this thing:

20

Submit Button Value

We have the following code sequence in a template-page1:

We want to introduce the text appearing on the button, that is, the submit type
value of the input, using the RenderText module. What we must modify in the
html file is:

As you can see, the name ButtonValue was assigned to the Search string of
characters. Next, we have to modify the text.php file situated in the root
directory of the template, by adding a new line:

The help array was also completed with the code line indicated by the second
arrow. This results in the appearance in the admin area, near the input where
the text Search is posted, of a tool tip containing the explanation “This is the
value for my button”, as indicated in the image bellow:

1
 I remind you that by template-page we understand one of the html files existing in the root

directory of the template.

21

RenderHTML

Role

You can use this module in order to insert an html code sequence, which is
repeated in more than one file within your template.

All you have to do is to practically create an html file within the modules
directory1, where you insert the repeating code sequence. Instead of running it,
you will run the RenderHTML module, together with the corresponding
parameters.

You might wonder why need such a module when you can simply leave the
sequence in the original file, without wasting time on moving it? Here’s the
reason:

It is highly probable that after having finished the template, you will want to
modify part of the code appearing in more than one template-page. In this case,
if you did not use the RenderHTML module, you ill have to do the same
procedure FOR EACH AND EVERY FILE. On the other hand, if you have
inserted the respective sequence using this module, all you have to do is to
open the file you created in the modules directory and which contains the code
sequence and to modify it A SINGLE TIME.

To better understand what this is all about, here there are some situations
where the use of the RenderHTML module is suited:

1. Installing the header

Usually, a site has one header, no matter if the visited page is generated using
the homepage.html, index.html templates or any other template-page. This is
reason enough to choose to use the RenderHTML module instead of the
alternative of writing in each template-page the code sequence for the header.

2. The newsletter subscription form

It is highly recommended that you use the RenderHTML module in order to
insert in a template-page the newsletter subscription form, because this form
will appear identical on more template-pages.

Running procedure

Running the RenderHTML module in a template-page can be done using the
following code:

1
 The modules directory is situated in the root directory of the template.

22

{runModule(#RenderHTML#,#FileName.html#)}

Where FileName is the name of the file you created in the nodules directory.

Pay attention! You will introduce this code in the exact spot of the code
sequence which has been inserted in the FileName.html file from the modules
directory.

How It Works

To understand better the way this module operates let us part from the running
sequence described above. You can interpret that code line as follows: the
RenderHTML module is run and the FileName.html string of characters is
transmitted as parameter. This parameter is used in order to identify the html
file from the modules directory containing the necessary code.

Localizing the FileName.html is very important. This file HAS to be found in the
modules directory. In case the address of the file you entered is wrong, you will
be returned in the front end an error similar to the one in the image bellow:

On the other hand, if you created the html file in the right place, the
RenderHTML module will insert the html code in the template-page, precisely in
the place of the running line.

Simply put, we can say that all that RenderHTML does is to include in the
template-page the file whose name is specified as parameter.

Functions and constants

For this module there are available some functions and variables you can use
in the FileName.html file1.

I have to mention that all the functions and all the variables can be used only
with the Flexy language.

1
 We cnsidered that in the tempate-page the following sequence was used in order to introduce

the RenderHTML module: {runModule(#RenderHTML#,#FileName.html#)}

23

siteLink – is the constant that contains the link to the start page of your site.

For example:

siteLink = http://www.example.com

If you want to see precisely how this constant looks like, all you have to do is to
open the settings.php file situated at the root/core/settings/settings.php. The
value of this constant is indicated by SITE_LINK as you can see in the image
below:

The running mode can be easily intuited if you would firstly read the
introduction to the flexy language described above. Wthin the html code, the
siteLink constant is introduced with the following code:

{siteLink}

If you try to implement a template for Bluo CMS you will notice how important
this constant is and how much does it help you in writing the code.
Here are some examples for its use:

1. Writing the source of an image:

2. Inserting a link towards the start page

bluo_template – is the constant containing the name of the current template
used by Bluo CMS. By current template I understand the last template having
been set up as active from the admin area.
For example:
bluo_template= YourTemplate

You might be wondering how you can realize what is the name of a template.
Very simple! The name of a template is given when you choose a name for the
root directory of a template. Therefore, if your template is located in the
MyTemplate directory, then the name of the template will be MyTemplate. The
moment this becomes active, that s, this template is selected in the admin
section in the Settings->Templates section, the bluo_template constant will take
its name, so it will contain the value “MyTemplate”.

24

If you want to see how precisely does this constant looks, all you have to do is
to open the settings.php file from: root/core/settings/settings.php. The value of
this variable is indicated as it appears in the image bellow:

The running procedure for this constant is:

{bluo_template}

Just as siteLink, this variable is important in writing the address toward different
files within the root directory of the template.
Here are some examples for its use:

1. Writing the source of an image from within the root directory of the
template

2. Writing the address towards a certain file from the root directory of the
template:

checkLogo() – is a function with which you verify whether a new logo has been
uploaded in the admin area, at the Settings-> General Options section. The
function returns true if the 2 conditions are simultaneously fulfilled:

1. the LOGO constant is set in the settings1 file, that is, the constant is
not void;

2. if LOGO is not void, then there is the image located at the address

root/uploaded/LOGO2

If one of these two constraints is not true then the checkLogo() function returns
false; in this case the default logo has to be posted, that is, the image assigned
as logo, for which the location address is known.

I have to mention that, when a new logo is selected in the admin area, the
LOGO constant from setting.php will automatically receive as value the name of

1
 Located at the address MyTemplate/core/settings/settings.php

2
 Where LOGO is replaced by its value

25

the selected image1, and this image is saved in the uploaded file located in the
template’s root.

In order to be able to write the path to the new image-logo the logo2 variable is
available to you; this will return precisely the value indicated by the LOGO
constant, that is, the name and the extension of the respective image. The logo
variable is usually used only together with the checkLogo() function.

Here’s an example of using the function:

Above, you can notice that if the checkLogo() function returns true, that is, a
new image has been uploaded as logo, the respective image will be posted.
Otherwise, an image located in the img3 directory, specially created for stocking
images, is posted.

You can also notice the appearance of a variable {time} in the name of the
image. This variable has been introduced in order to avoid the memorizing in
the cache of the browser of the name of the logo-image. This would have led to
posting in the front end of the precedent image, although this has been
replaced from the admin area. The introduction of this time related variable
makes the browser interpret two images with the same name as distinct one
from another.

Examples

Insert Header

Inserting the header is an example of an obvious use of the RenderHTML
module.
Let us consider that the template-page you are modifying contains the following
code sequence:

1
 If the image’s name is logo.png then LOGO = ‘logo.png’. It is important that you remember

that the name of an image is saved together with its extension; this helps when you want to
write the source of the image for the uploaded logo.
2
 The running mode for this one is {logo}

3
 The img directory is located in the root directory of the template.

26

Practically, you use this code to insert the logo in the web page.
If you choose to use the RenderHTML module in order to introduce the code
from the header, then this page will look like this:

All we did so far was to recall the module we are talking about. We now have to
create the html file whose name was send as parameter in the running line. Pay
attention, nevertheless, to the creation address! The structure of the modules
directory has to look like this:

The content of the html file is the following:

27

RenderInfo

Role

You use RenderInfo when you want to introduce the name or the link of a single
page in your site within one of the template’s sections, different from the section
where you introduce the content of the page1.

You can notice the usefulness of this module when you have to introduce a link
towards a page such as SiteMap, FAQs, Terms of use, which are not usually
integrated into any of the site’s menus. The fact that they do not appear in any
of the site’s menu implies that they will be located in the Non-menu pages
category, and they can be found in the tree in the admin area:

Let us suppose you want to introduce the link in the image bellow:

In order to do this, you need to know two elements:

- the link towards the SiteMap page
- the name of the page

1
 Within the content of the page one can insert a link using the editor.

28

You might be wondering why you have to name the page using the RenderInfo
module when you know that this is called SiteMap. But think from the following
angle: the moment you want to change the name of this page, you will have to
intervene into the code and make the change. On the other hand, if you use
RenderInfo, the moment you have changed the name of this page in the admin
area, the same change will happen automatically in the front end of your site.

Pay attention! In order to use this module you have to know the id of the
page whose link you want to find out. How do you get this id? Very simple! You
log in the admin area, you right click on the respective page and you click on
Preview. In the address bar you will have something like this:

http://www.yoursite.com/index.php?id=idValue&admin=...

The id you need is actually idValue.

Running procedure

You can run the RenderInfo module in a template-page by using the following
code:

{runModule(#RenderInfo#,#idValue#,#infoName#)}

where:

- idValue is the id of the page for which the information is asked
- infoName is the name of the information. This parameter can take two

distinct values:
1. name – in this case, running the RenderInfo module will result

in the name of the page having idValue as id.
2. link – in this case, running the RenderInfo module will result in

the link towards the page having idValue as id.

Pay attention! You will type this code line in the exact place where you want
the respective name/link to be inserted.

How it works

Just as in the case of the other described modules, I will explain to you the way
the RenderInfo module works :

{runModule(#RenderInfo#,#idValue#,#infoName#)}

This code line can be “translated” such as this: the RenderInfo module is run
and idValue and infoName are are sent as paramenters. They will be used in
order to obtain the wanted information.

29

Available Functions and Variables

For this module no function or variable is needed.

Examples

Creating a menu

Even if the RenderMenu module will also be available to you in order to create
menus, and which will be described later on, there are some cases in which,
using the RenderInfo module, you will be able to create a menu:

Here it is how the html code for the section in the above picture looks like
before using any Bluo module:

The code that you have to type in the template-page is the following one:

Inserting a link towards a page in the Menu Pages section

You must not understand that this module can be used only in reference to
pages in the Non-Menu Pages section. Here’s an example of a link towards a
page from the Menu Pages category.
Let us suppose that you do not want that the home page be included in the
main menu of your site1 and that you want to insert a link towards this page in a
distinct section.

Let us consider the image bellow:

1
 This is possible by correctly using the RenderMenu module. For more details see the section

dedicated to this module.

30

The initial html code the image above, without using any Bluo module, is:

In the template page you must write the following code:

31

RenderBreadcrumb

Role

The role of this section is to help you generate a breadcrumb type section.

What is a breadcrumb? Here’s how you can define this notion:

Breadcrumb is a link to all levels of the hierarchy above the current location,
showing the route you have taken on the site, and the context of the current
page. Breadcrumbs allow you to backtrack and to move up the hierarchy.

If you did not understand what it is all about, here’s an eloquent image with this
type of a sequence:

Practically, the breadcrumb describes the level path until the current page.
Here’s how the tree structure looks like for the situation above:

32

If your site contains such a section named Breadcrumb, than you ought to use
the RenderBreacrumb module.

Running procedure

In case your site contains a breadcrumb section, than all you have to do in
order to create it is to insert the following code in the html file from the template-
page on the place where you want it to appear in the front end of the site:

{runModule(#RenderBreadcrumb#,#FileName.html#)}

Where the FileName is the name of the file you created in the modules
directory.

This running mode, as well as the fact that you work with a file from the
modules directory, might make you think that this module does the exact same
thing as the RenderHTML module. Nonetheless, you will discover there are
many differing elements between them, the distinction being mostly based on
the different functions and variables made available by each of the two
modules.

How it works

33

To understand better the way this module operates, let us leave from the code
sequence described above. That code line can be interpreted as it follows: the
RenderBreadcrumb module is run and the NumeFisier.html string of characters
is sent as a parameter. This parameter will be used to identify the html file from
the modules directory which contains the code needed for creating the
breadcrumb section.

Localizing the NumeFisier.html file is very important. This must NECESSARILY
be located in the modules directory. In case you entered the wrong address for
creating the file, an error similar to the one in the following image will be
returned in the front end:

On the other hand, in case you created the html file in the right place, the
RenderHTML module will insert for you the html code in the template-page.

More simply put, we can say that all that RenderBreadcrumb does is to include
the file whose name is specified as parameter in the template-page.

The content of the FileName.html file is very important for the
RenderBreadcrumb module, because this is where the code which generates
the elements of the breadcrumb has to be written. I said elements because, as I
have already mentioned in the Role chapter, the breadcrumb is composed by
more links.

Functions and Variables

breadcrumbItems – is a vector containing the names of all the pages needed
to build the breadcrumb, except for the start page.

It is of utmost importance that you know that all the elements are inserted within
this array in the exact order. Therefore, in order to correctly display the
breadcrumb, you must not perform any other changes, but simply publish the
breadcrumbItems array.

The vector is indexed by the id of the page, and its value is the name of the
page:

breadcrumbItems [pageId] = namePage;

To understand better the way you have to run it, follow the example from the
Examples chapter.

34

root_name – is a constant containing the name you have chosen for your site.
You can find out the value of this constant by opening the settings.php file
located at root/core/settings/settings.php. The constant is pointed by
SITE_ALIAS as you can also see in the image below:

Running procedure

{root_name}

root – is the constant containing the link towards the start page of your site,
equivalent to siteLink, already explained at the RenderHTML module
description.

For example:

root = http://www.example.com

If you want to see how precisely this constant looks like, all you have to do is to
open the settings.php file located at root/core/settings/settings.php. The value
of this constant s given by SITE_LINK, as you can see in the image below:

Running procedure
Within the html code, you will insert the root constant using the following code:

{root}

This constant is very important because, as I have already mentioned, in the
breadcrumbItems array, the start page is not included. And this is a page that
the breadcrumb has to contain.

35

bluo_template – is the constant containing the name of the current template
used by Bluo CMS. By the current template you will understand the last
template which has been set on as active in the admin area.

For example:

bluo_template= YourTemplate

If you want to see how precisely this variable looks at one moment in time, all
you have to do is to open the settings.php file located at
root/core/settings/settings.php. The value of this variable is identical to the one
indicated in the TEMPLATE, as it appears in the image below:

The running procedure for this variable is:

{bluo_template}

This variable is important in the description of the address towards different
files within the root directory of the template.

compare(pageId) – is a function which receives an id as parameter and
verifies if this parameter is or is not equal to the id of the current page. The
function returns the true value if the parameter coincides to the id of the current
page. Otherwise, it will return the value false.

Why do you need this function? Because the name of the current page appears
within the breadcrumb, but it does not appear as a link, but as a simple text,
and this is very important. Therefore, you will need a function in order to verify
which element within the breadcrumbItems must not appear as a link.

To run this function you will use an IF structure.

 {if:compare(id)}

where id is the id of the page for which you make the check out.

getLink(pageId) – is a function which receives an id of a page as parameter
and which returns the link of this page.

36

To run this function you will proceed as follows:

{getLink(id)}

where id is the id of the page whose link you want to know.

isEmpty() – is a function with which you will check if the breadcrumbItems
array contains any element, that is, if it is necessary for the breadcrumb to be
displayed or not.

The function returns true if the array is void and false if this array contains at
least one element.

I mentioned before that the breadcrumbItems array does not contain the start
page; this means that if the isEmpty() function returns true the visited page is
quite the start page, and in this case the appearance of the breadcrumb section
will not be needed.

The running procedure for this function is similar to that of the compare(id)
function, because an IF structure is also used here. And because you are
interested in the case where the breadcrumb can appear, that is, the case
where the isEmpty() function returns false, you will prefer recalling it by
negating the result of the function, that is:

{if:!isEmpty()}

Example

Let us consider the breadcrumb from the image below:

We want to write the code needed to generate this breadcrumb.

37

The code that we have to write in the template of the page where it will appear
is the following::

{runModule(#RenderBreadcrumb#,#Breadcrumb.html#)}

Having only one parameter, this cod is very easy to be written. The only
decision you have to take concerns the name of the file where you will write the
code for the breadcrumb.

Breadcrumb.html looks as follows:

Let us now comment a little upon the code from Breadcrumb.html
The first thing to be done is to verify whether the breadcrumbItems array is or is
not void. In case there are elements in this array, the link towards the start page
(about which I mention before that is not included in the breadcrumbItems) will
be shown.

The next step consists of going through the array and writing all its elements.
Because of the fact that the name of the current page must not be a link,
another checking is being made before any element of the vector is published;
for this, the compare(pageId) function is used.
You must pay special attention to correctly close the flexy structures; for this,
you must correctly position the {end:} tag.

38

RenderMenu

Role

For any web site the navigation menu is a very important element!

The RenderMenu module is useful precisely because of this thing: it helps you
create different menus that your site will make available to the users.

As you well know, there can be menus where only pages from level 1 are
published, or only pages from level 2, or menus which contain all the pages
from level 1 and 2. Of course, you can extend this assertion to n levels,
depending on the way the pages are organized on your site.

If you are not familiar to the numbering way of the levels, the following image
will be of great help to you:

Practically the RenderMenu does not do anything else but to generate a menu
depending on several parameters I will describe to you next..

Running procedure

In order to create a menu with RenderMenu, you have to insert in the template-
page the following code line:

39

{runModule(#RenderMenu#,#includeHomepage#,#start#,#end#,#e

xpand#,#NumeFisier.html#)}

Where:

- the first parameter represents the name of the module and will always
receive the value RenderMenu in order to run this module;

- includeHomepage is a parameter which can take the true or false
values, depending on whether you wish or not to include the start page
among the elements of the menu.

- start is the parameter which indicates the level from which you started to
create the menu. It can take the following values:

o 1,2,3 … - that is, indicating the number of the wanted level as the
start level

o CURRENT, CURRENT+1, CURRENT+2 … - which means that
the starting level is chosen in reference to the level where the
current page is situated. Therefore, if the start parameter receives
the value CURRENT+1, and the visited page is located at the 2nd
level, than the generation of the module will start from 2+1. In
other words, he constant CURRENT actually indicates the level of
the current page.

- end is a similar parameter to start, and it indicates the level until which
you will create the menu. It can take the following values:

o 1,2,3 … - that is, indicating the number of the wanted level as the
finish level

o CURRENT, CURRENT+1, CURRENT+2 … - which means that
the level until which the menu will be created is chosen in
reference to the level where the current page is situated.
Therefore, if the end parameter receives the value CURRENT+1,
and the visited page is located at the 3nd level, than the ending
level of the menu will be 3+1.

- FileName.html – is the name of the file where you will type the html
code for the menu; this file has to be located in the modules directory
from the root directory of your template.

- expand is a parameter which can take the following values:
o all – which means that your menu will contain all the pages

located between the start and the end levels, inclusively.
o selected – which is a particular expand-all. That is: you leave from

the start level and you expand the menu only on the selected
branch

To understand this better, let us consider the following consideration of the
pages:

40

You will run the RenderMenu module as follows:

{runModule(#RenderMenu#,#true#,#1#,#3#,#selected#,#FileNam

e.html#)}

The name of the html file is of no importance to us for the moment. What I
would like to explain to you now is the selection mode of the pages in case the
parameter expand receives the value selected.

This way, if the current page1 is Homepage, than when the menu is generated,
all the pages from the same level as Homepage will be taken into
consideration. Also, there will be taken into consideration all the pages directly
linked with the selected page (in our case, there are no such pages). In the
front end the menu will actually look like this:

1
 By current page you must understand the visited page

41

The menu will have the same structure in case the selected page is one of the
following: Services, About or Contact.

The situation will change when the Products page is selected. The menu will
change as follows:

As you can notice, level 2 was expanded only for the selected page, that is, the
Products page.

Moving on, if we select the Product1 page, the menu will have the following
configuration:

42

At this stage (when the Product1 page is the current page) we select the
Product2 page and the menu will change as follows:

So, in case the expand parameter receives selected as value, I conclude that
the menu is composed by all the pages from the start level plus all the pages
from the selected branch until level n, where n is equal to:

- end in case the visited page is located on the end level;
- N+1 (where N is the level where the selected page is located) in case

N<end.

How it works

The running line for the RenderMenu module is the following:

43

{runModule(#RenderMenu#,#includeHomepage#,#start#,#end#,#e

xpand#,#FileName.html#)}

The RenderMenu module is run, and includeHomepage, the starting
level(indicated by start), the ending level (indicated by end), the expanding
mode (all – all the page are expanded; selected – only the branch containing
the selected page is expanded) and the file where the menu is formatted
(indicated by FileName.html) are transmitted as parameters.

Pay attention! The FileName.html file has to be located, as I mention
before, in the modules directory. Otherwise, the following error will appear in
the front end:

In the case above the FileName.html parameter received the value Menu.html.
The error above was a result of the fact that no html file under the name
Menu.html was found in the modules directory.

In other words, in this file it is written in html code the mode in which the menu
generated using the parameters sent while running (that is includeHomepage,
start, end, expand, NumeFisier.html) will appear. Generating the menu consists
of populating an array which will be gone through in the FileName.html file and
which will contain all the pages that have to be displayed. More about this array
in the next section.

Functions and Variables

The set of functions and variables you can use within the FileName.html file in
order to display your menu are the following:

nodes – is the vector containing all the names of the pages in the menu, whose
selection was based on the set parameters The indexation of this array is to be
done by the pages ids:

nodes [pageId] = pageName;

44

You will run this array in foreach1 structure, because in order for the menu to be
published it is necessary for it to be gone through. I will show you some
examples of where to use nodes in the Examples section.

bluo_template – is the constant containing the name of the current template
used by Bluo CMS. By current template you will understand the last template
which has been set on as active in the admin area.
For example:
bluo_template= YourTemplate

If you want to see how precisely this variable looks at some point, all you have
to do is to open the settings.php file located at root/core/settings/settings.php.
The value of this variable is identical to the one indicated in the TEMPLATE, as
it appears in the image below:

The running procedure for this variable is:

{bluo_template}

This variable is important in writing the address towards different files within the
root directory of the template.

 hasChildren(pageId) – is a function with which you can check if the page with
the id pageId has or does not have children, that is, directly linked pages
towards it. The function returns true if the page checked has at list one child,
and false if this page has no children.

To understand better the notion of a child page, in the image below there are
pointed out the 1st order children for the Products page.

1
 See the introductive chapter on the Flexy language.

45

You will run the hasChildren(pageId)function in an IF structure, as it follows:

{if:hasChildren(pageId)}

isFirst(pageId) – – is a function with which you can check if the page with the
pageId id is the first one contained in the nodes array; in other words, you can
check if it is the first element in the menu.

The function returns true if the page with the id pageId is the first element in the
vector. Otherwise, it returns false.

One example of running this function is:

{if:isFirst(pageId)}

getLink(pageId) – is a function which receives an id of a page as parameter
and returns the link towards this page

To run this function you will type:
{getLink(id)}

where id is the id of the page for which you want to know the link.

isSelected(pageId) – is a function which gives you the opportunity to check if a
page is or is not visited during the moment when the menu is generated.

46

The function returns true if the page with the id pageId is the current page.
Otherwise, it returns false.

The running mode for this function is:

{if:isSelected(pageId)}

isSelected(pageId) is useful in case you want to apply other styles to the
element in the menu which indicates the current page.

isActive(pageId) – is a function which returns true if the page with the id
pageId is the selected page or if it is located on the child-parent path from the
selected page to the corresponding page on the top level of the menu.

Let us consider the case in the image below:

As you can notice, the selected page is Photo Tour. The child-parent path from
this page till the starting level is:

Photo Tour -> Product2 -> Products. Therefore, the isActive(pageId) will return
true if the page with the id pageId will indicate the id of one of the pages
mentioned above.

If you look closely to the image, the child-parent path I mentioned above can
also be identified in the breadcrumb1, only written in the reverse order.

The running mode for this function is:

1
 The breadcrumb appears in the right of the image.

47

{if:isActive(pageId)}

We can observe that isActive behaves just as isSelected in case pageId
indicates the value of the selected page’s id.

checkLogo() – is a function with which you can check if a new logo has been
uploaded from the admin area, in the Settings-> General Options section. The
function returns true if the following two constraints are simultaneously fulfilled:

1. in the settings1 file, the LOGO constant is set on, that is, it is not void

2. if LOGO is not void, than there exists the image located at
root/uploaded/LOGO2

If one of this conditions is not true , than the checkLogo() function will return
false; in this case the default logo will be posted, which is the image assigned
as logo whose address is known.

I have to mention that once a new logo is selected from the admin area, the
constant LOGO from the settings.php will automatically receive as value the
name of the selected image3; this image is saved in the uploaded directory
located in the root of the template.

In order for you to write the path towards the new image-logo, the logo4 variable
is available to you. It will return precisely the value indicated by the LOGO
constant, that is, the name and the extension of the respective image. The logo
variable will usually be used only together with the checkLogo() function.

Here’s an example of using this function:

In the example above you may notice that if the checkLogo() function returns
true, that is, a new image has been uploaded as logo, the respective new
image will be published. Otherwise, an image located in the img5 directory,
specially created for stocking images, will be published.

1
 You can find it at MyTemplate/core/settings/settings.php.

2
 Where LOGO is replaced by its value.

3
 If the image is called logo.png then LOGO = ‘logo.png’. It is important that you remember that

the name of the image is saved together with its extension; this will be of great value when you
want to write the source of the image for the uploaded logo.
4
 Its running mode is {logo}.

5
 The img directory can be found in the root directory of the template.

48

In the same time, you may notice the appearance of a variable, {time}, in the
name of the image. This variable was inserted in order to avoid an eventual
memorizing in the cache of the browser of the name of the image-logo. This
would mean that in the front end the preceding image would be published,
whereas this has been replaced in the admin area. The appearance of this
variable, depending on the time, makes the browser interpret as distinct two
images that have practically the same name.

compareShift(pageId,level) – is a function which returns true if the page with
the id pageId is located on the same level. Otherwise, it returns false.

What I must mention here is that level takes values starting with 0. Therefore, in
case you want to test if the page with the id pageId is on the top level in the
tree, you must run the function as it follows:

{if:compareShift(pos,0)}

In order to do the same thing for the next level, the level parameter needs to
take the value 1.

The running mode for this function is the one indicated above.

This function is important in case your menu contains pages for more than one
level, as it will help you make a distinction between pages located on different
levels.

getShift(pageId) – is a function which returns the level where the page with the
id pageId is located.

Its running procedure:

{getShift(pageId)}

Examples

Let us consider the menu below:

49

You want to write the code needed to generate this module.

Observations:

- all the included pages are located on the first level of the tree in the
admin area; therefore, the start parameter will be equal to the end
parameter, both of them showing the common level of the pages.

- homepage is part of the menu so the includeHomepage parameter will
be true

You have to insert in the template of the page where you want this menu to
appear the following code:

{runModule(#RenderMenu#,#true#,#1#,#1#,#all#,#TopMenu.html

#)}

I chose to name the file where I will write the code for the menu TopMenu.html.
Instead of this name, any other name can be chosen, provided that it respects
the extension.

TopMenu.html looks like this:

The only thing from this code that has to be explained is the way the elements
from the menu are extracted from the nodes array.. In this way, using the
foreach structure from the flexy language, a loop through the elements of the
array will be executed. The elements of the menu are present in the array in the
precise order they must be published.

50

The CSS

This chapter is dedicated entirely to the way in which you have to create the
style.css file. You might be wondering why this file needs to have a certain
structure as long as it contains the styles for your template that you can sort,
create and use as you please.

It is important that you follow a certain structure in order to have access to
some facilities offered by Bluo. In this way, you will be able to use some styles
from style.css within the editor in the admin area of the site. Or you can change
some colors, some styles for the fonts, some borders of your site, without
modifying the style.css file. Instead, by simply clicking a few times in the admin
area, more precisely in the Settings->Design options section you can obtain all
these changes.

In order for your template to be modifiable in respect to the colors, the fonts or
the borders, you have to follow certain structures of declaring the classes which
set these elements.

The elements of a class you created in styles.css become modifiable from the
admin area only if the respective class has been declared according to the
following structure:

/* category | classTitle | classDescription */

.Change_className{

 styles

}

where:

category – is the name of the category containing the respective class

51

You declare a category at the beginning of the style.css as it follows:

/* categoryName: categoryDescription */

categoryName and categoryDescription are the parameters you chose
according to your needs. The values you choose for them can be
visualized in the admin area, in the Settings->Design options section.

classTitle – is the name the class takes in the admin area.

classDescription – is the description of the respective class for the admin
area.

className – is a pseudo-name for the class; the pseudo-name is appended
with the string of characters “Change_” and there results the name of the
class.

Pay attention!!! In the html files this class will be run under the name
Change_className.

classTitle and classDescription are visible in the admin area as it follows:

styles – represents the styles which become modifiable.

52

Pay attention!!! Not all the styles included in the class are necessarily
modifiable. As I mentioned before, in this category there enter only the
properties related to border, color, font-size, font-family and background color.

In other words, if we have a class declares as it follows:

/* Text options | Heading2 | Sets the text style for h2 */

.Change_heading2{

 color: #0086C6;

 font-size: 18px;

 font-family: Arial, sans-serif;

 text-align: left;

 margin: 0px;

 padding-left: 23px;

 padding-top: 0px;

}

 from these properties there become modifiable only the following: color, font-
size an font-family, the rest of them remaining as they are. These last ones will
not be included in the main area either, which means that you will be able to
visualize from that class only the following elements in the Settings->Design
options section:

Let us see an example of the beginning part of a style.css file.

53

The first and the second line contain the declaration part of the categories
where the classes containing the modifiable elements are included.

The next, third, line sets “Backgroung color” class and the “Sets the website
background” description as part of the Color options category.

After this line there follows the definition of the class, without overlooking using
the proper syntax for the name of the class; this means that you must begin it
with the “Change_” string of characters. Following this declaration, in the
admin area the following elements will be visible:

Regarding the import of certain classes from style.css in the editor in the admin
area, you must divide the classes in:

- classes for the elements p, h1, h2 etc1
- custom classes you have created.

Integrating the classes for the p, h1, h2 etc elements is done automatically.
That means that if I have the following class in the style.css

1
 Any class that is assigned to a container (p, div, ul, etc) and which is declared using only the

name of that container.

54

p{

 font-size: 12px;

}

then any paragraph from the editor will have this class as the default class. The
same is for the other elements.

The custom classes you have created can be imported in the editor by
modifying their name taking into account the following aspect:
Any class which contains within its name the string of characters “Editor_” is
imported in the editor.
All you have to do is to actually take each class that you need in the editor and
include “Editor_” in its name.

Pay attention!!! Do not forget to modify the name of the respective classes
in the html files where you will use them also.

The classes thus imported in the editor will be included into a dropdown which
appears in the menu of the editor, as indicated in the following image:

The classes above have appeared because of the following code from the
style.css file:

.Editor_clasaDemo1{

}

.Editor_clasaDemo2{

}

55

.Editor_clasaDemo3{

}

